Compare Page

Completeness of optional attributes

Characteristic Name: Completeness of optional attributes
Dimension: Completeness
Description: Optional attributes should not contain invalid null values
Granularity: Element
Implementation Type: Rule-based approach
Characteristic Type: Declarative

Verification Metric:

The number of invalid null values reported in an optional attribute per thousand records

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Provide default values for each valid case of null values for the attribute in concern so that null values occur only for actually missing values which are invalid cases for the attribute in concern. Case1: Attribute values that are not defined for a particular entity instance (e.g.: Maiden name of unmarried women ) Such instances will get the default value “NOT DEFINED”

Case2 : Attribute values that are defined for the entity instance whereas the real value for the attribute instance is null (eg: Vehicle number of a student who does not have a vehicle) Such instances will get the default value “NOT EXIST”

Case3: Attribute values are defined for the entity instance and the attribute instance should have a value (Student’s date of birth).

Validation Metric:

How mature is the creation and implementation of the DQ rules to define valid null cases

These are examples of how the characteristic might occur in a database.

Example: Source:
Let us consider a Person relation with the attributes Name, Surname,

BirthDate,and Email. The relation is shown in Figure 2.2. For the tuples with Id equalto2,3,and 4, the Email value is NULL. Let us suppose that the person represented by tuple 2 has no e-mail: no incompleteness case occurs. If the person represented by tuple 3 has an e-mail, but its value is not known then tuple 3 presents an incompleteness. Finally, if it is not known whether the person represented by tuple 4 has an e-mail or not, incompleteness may not be the case.

ID 1

2 3 4

Name John

Edward Anthony Marianne

Surname Smith

Monroe White Collins

BirthDate 03/17/1974 02/03/1967 01/01/1936 11/20/1955

Email

smith@abc.it NULL NULL NULL

not existing existing but unknown not known if existing

Fig. 2.2. The Person relation, with different null value meanings for the e-mail attribute

C. Batini and M, Scannapieco, “Data Quality: Concepts, Methodologies, and Techniques”, Springer, 2006.
1) A database contains information on repairs done to capital equipment. How- ever, it is a known fact that sometimes the repairs are done and the informa- tion about the repair is just not entered into the database. This is the result of lack of concern on the part of the repair people and a lack of enforcement on the part of their supervisors. It is estimated that the amount of missing information is about 5%. This database is probably a good-quality database for assessing the genral health of capital equipment. Equipment that required a great deal of expense to maintain can be identified from the data. Unless the missing data is disproportionately skewed, the records are usable for all ordinary decisions. However, trying to use it as a base for evaluating information makes it a low-quality database. The missing transactions could easily tag an important piece of equipment as satisfying a warranty when in fact it does not.

2) A blank for COLLEGE_LAST_ATTENDED may be accurate or inaccurate. If the person it applied to had attended college, it would be inaccurate. This is another case of valid but not accurate.

J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
1) A null value is a missing value. However, a value that is missing may provide more information than one might think because there may be different reason that it is missing. A null value might actually represent an unavailable value, an attribute that is not applicable for this entity, or no value in the attribute’s domain that correctly classifies this entity. Of course, the value may actually be missing.

2) When the null value (or absence of a value) is required for an attribute, there should be a recognizable form for presenting that null value that does not conflict with any valid values.

LOSHIN, D. 2001. Enterprise knowledge management: The data quality approach, Morgan Kaufmann Pub.
1) Ability to distinguish neatly (without ambiguities) null and default values from applicable values of the domain.

2) Completeness refers to the degree to which values are present in a data collection, as for as an individual datum is concerned, only two situations are possible: Either a value is assigned to the attribute in question or not. In the latter case, null, a special element of an attribute’s domain can be assigned as the attribute’s value. Depending on whether the attribute is mandatory, optional, or inapplicable, null can mean different things.

REDMAN, T. C. 1997. Data quality for the information age, Artech House, Inc.

 

Semantic consistency

Characteristic Name: Semantic consistency
Dimension: Consistency
Description: Data is semantically consistent
Granularity: Element
Implementation Type: Rule-based approach
Characteristic Type: Declarative

Verification Metric:

The number of semantically inconsistent data reported per thousand records

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Ensure that semantics of data is consistent within/across applications (1) All orders placed by the customers are called “Sales order” in all tables/databases.
(2) Anti-example:
Payment type ( Check)
Payment Details (Card type,
Card number)
Maintenance of data dictionary or standard vocabularies of data semantics (1) Data dictionary provides technical data as well as semantics of data

Validation Metric:

How mature is the creation and implementation of the DQ rules to maintain semantic consistency

These are examples of how the characteristic might occur in a database.

Example: Source:
School admin: a student’s date of birth has the same value and format in the school register as that stored within the Student database. N. Askham, et al., “The Six Primary Dimensions for Data Quality Assessment: Defining Data Quality Dimensions”, DAMA UK Working Group, 2013.
A company has a color field that only records red, blue, and yellow. A new requirement makes them decide to break each of these colors down to multiple shadings and thus institute a scheme of recording up to 30 different colors, all of which are variations of red, blue, and yellow. None of the old records are updated to the new scheme, as only new records use it. This data- base will have inconsistency of representation of color that crosses a point in time. J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
Data about an object or event in one data store is semantically Equivalent to data about the same object or event in another data store. ENGLISH, L. P. 2009. Information quality applied: Best practices for improving business information, processes and systems, Wiley Publishing.
Data is consistent if it doesn’t convey heterogeneity, neither in contents nor in form – anti examples: Order.Payment. Type = ‘Check’; Order. Payment. CreditCard_Nr = 4252… (inconsistency in contents); Order.requested_by: ‘European Central Bank’;Order.delivered_to: ‘ECB’ (inconsistency in form,because in the first case the customer is identified by the full name, while in the second case the customer’s acronym is used). KIMBALL, R. & CASERTA, J. 2004. The data warehouse ETL toolkit: practical techniques for extracting. Cleaning, Conforming, and Delivering, Digitized Format, originally published.
The extent of consistency in using the same values (vocabulary control) and elements to convey the same concepts and meanings in an information object. This also includes the extent of semantic consistency among the same or different components of the object. STVILIA, B., GASSER, L., TWIDALE, M. B. & SMITH, L. C. 2007. A framework for information quality assessment. Journal of the American Society for Information Science and Technology, 58, 1720-1733.